$$ -*- mode: c++; -*- $$ This is a Pump source file. Please use Pump to convert $$ it to gmock-generated-matchers.h. $$ $var n = 10 $$ The maximum arity we support. $$ }} This line fixes auto-indentation of the following code in Emacs. // Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used variadic matchers. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_ #include #include #include #include #include "gmock/gmock-matchers.h" namespace testing { namespace internal { $range i 0..n-1 // The type of the i-th (0-based) field of Tuple. #define GMOCK_FIELD_TYPE_(Tuple, i) \ typename ::testing::tuple_element::type // TupleFields is for selecting fields from a // tuple of type Tuple. It has two members: // // type: a tuple type whose i-th field is the ki-th field of Tuple. // GetSelectedFields(t): returns fields k0, ..., and kn of t as a tuple. // // For example, in class TupleFields, 2, 0>, we have: // // type is tuple, and // GetSelectedFields(make_tuple(true, 'a', 42)) is (42, true). template class TupleFields; // This generic version is used when there are $n selectors. template class TupleFields { public: typedef ::testing::tuple<$for i, [[GMOCK_FIELD_TYPE_(Tuple, k$i)]]> type; static type GetSelectedFields(const Tuple& t) { return type($for i, [[get(t)]]); } }; // The following specialization is used for 0 ~ $(n-1) selectors. $for i [[ $$ }}} $range j 0..i-1 $range k 0..n-1 template class TupleFields { public: typedef ::testing::tuple<$for j, [[GMOCK_FIELD_TYPE_(Tuple, k$j)]]> type; static type GetSelectedFields(const Tuple& $if i==0 [[/* t */]] $else [[t]]) { return type($for j, [[get(t)]]); } }; ]] #undef GMOCK_FIELD_TYPE_ // Implements the Args() matcher. $var ks = [[$for i, [[k$i]]]] template class ArgsMatcherImpl : public MatcherInterface { public: // ArgsTuple may have top-level const or reference modifiers. typedef GTEST_REMOVE_REFERENCE_AND_CONST_(ArgsTuple) RawArgsTuple; typedef typename internal::TupleFields::type SelectedArgs; typedef Matcher MonomorphicInnerMatcher; template explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher) : inner_matcher_(SafeMatcherCast(inner_matcher)) {} virtual bool MatchAndExplain(ArgsTuple args, MatchResultListener* listener) const { const SelectedArgs& selected_args = GetSelectedArgs(args); if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args); PrintIndices(listener->stream()); *listener << "are " << PrintToString(selected_args); StringMatchResultListener inner_listener; const bool match = inner_matcher_.MatchAndExplain(selected_args, &inner_listener); PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } virtual void DescribeTo(::std::ostream* os) const { *os << "are a tuple "; PrintIndices(os); inner_matcher_.DescribeTo(os); } virtual void DescribeNegationTo(::std::ostream* os) const { *os << "are a tuple "; PrintIndices(os); inner_matcher_.DescribeNegationTo(os); } private: static SelectedArgs GetSelectedArgs(ArgsTuple args) { return TupleFields::GetSelectedFields(args); } // Prints the indices of the selected fields. static void PrintIndices(::std::ostream* os) { *os << "whose fields ("; const int indices[$n] = { $ks }; for (int i = 0; i < $n; i++) { if (indices[i] < 0) break; if (i >= 1) *os << ", "; *os << "#" << indices[i]; } *os << ") "; } const MonomorphicInnerMatcher inner_matcher_; GTEST_DISALLOW_ASSIGN_(ArgsMatcherImpl); }; template class ArgsMatcher { public: explicit ArgsMatcher(const InnerMatcher& inner_matcher) : inner_matcher_(inner_matcher) {} template operator Matcher() const { return MakeMatcher(new ArgsMatcherImpl(inner_matcher_)); } private: const InnerMatcher inner_matcher_; GTEST_DISALLOW_ASSIGN_(ArgsMatcher); }; // A set of metafunctions for computing the result type of AllOf. // AllOf(m1, ..., mN) returns // AllOfResultN::type. // Although AllOf isn't defined for one argument, AllOfResult1 is defined // to simplify the implementation. template struct AllOfResult1 { typedef M1 type; }; $range i 1..n $range i 2..n $for i [[ $range j 2..i $var m = i/2 $range k 1..m $range t m+1..i template struct AllOfResult$i { typedef BothOfMatcher< typename AllOfResult$m<$for k, [[M$k]]>::type, typename AllOfResult$(i-m)<$for t, [[M$t]]>::type > type; }; ]] // A set of metafunctions for computing the result type of AnyOf. // AnyOf(m1, ..., mN) returns // AnyOfResultN::type. // Although AnyOf isn't defined for one argument, AnyOfResult1 is defined // to simplify the implementation. template struct AnyOfResult1 { typedef M1 type; }; $range i 1..n $range i 2..n $for i [[ $range j 2..i $var m = i/2 $range k 1..m $range t m+1..i template struct AnyOfResult$i { typedef EitherOfMatcher< typename AnyOfResult$m<$for k, [[M$k]]>::type, typename AnyOfResult$(i-m)<$for t, [[M$t]]>::type > type; }; ]] } // namespace internal // Args(a_matcher) matches a tuple if the selected // fields of it matches a_matcher. C++ doesn't support default // arguments for function templates, so we have to overload it. $range i 0..n $for i [[ $range j 1..i template <$for j [[int k$j, ]]typename InnerMatcher> inline internal::ArgsMatcher Args(const InnerMatcher& matcher) { return internal::ArgsMatcher(matcher); } ]] // ElementsAre(e_1, e_2, ... e_n) matches an STL-style container with // n elements, where the i-th element in the container must // match the i-th argument in the list. Each argument of // ElementsAre() can be either a value or a matcher. We support up to // $n arguments. // // The use of DecayArray in the implementation allows ElementsAre() // to accept string literals, whose type is const char[N], but we // want to treat them as const char*. // // NOTE: Since ElementsAre() cares about the order of the elements, it // must not be used with containers whose elements's order is // undefined (e.g. hash_map). $range i 0..n $for i [[ $range j 1..i $if i>0 [[ template <$for j, [[typename T$j]]> ]] inline internal::ElementsAreMatcher< ::testing::tuple< $for j, [[ typename internal::DecayArray::type]]> > ElementsAre($for j, [[const T$j& e$j]]) { typedef ::testing::tuple< $for j, [[ typename internal::DecayArray::type]]> Args; return internal::ElementsAreMatcher(Args($for j, [[e$j]])); } ]] // UnorderedElementsAre(e_1, e_2, ..., e_n) is an ElementsAre extension // that matches n elements in any order. We support up to n=$n arguments. // // If you have >$n elements, consider UnorderedElementsAreArray() or // UnorderedPointwise() instead. $range i 0..n $for i [[ $range j 1..i $if i>0 [[ template <$for j, [[typename T$j]]> ]] inline internal::UnorderedElementsAreMatcher< ::testing::tuple< $for j, [[ typename internal::DecayArray::type]]> > UnorderedElementsAre($for j, [[const T$j& e$j]]) { typedef ::testing::tuple< $for j, [[ typename internal::DecayArray::type]]> Args; return internal::UnorderedElementsAreMatcher(Args($for j, [[e$j]])); } ]] // AllOf(m1, m2, ..., mk) matches any value that matches all of the given // sub-matchers. AllOf is called fully qualified to prevent ADL from firing. $range i 2..n $for i [[ $range j 1..i $var m = i/2 $range k 1..m $range t m+1..i template <$for j, [[typename M$j]]> inline typename internal::AllOfResult$i<$for j, [[M$j]]>::type AllOf($for j, [[M$j m$j]]) { return typename internal::AllOfResult$i<$for j, [[M$j]]>::type( $if m == 1 [[m1]] $else [[::testing::AllOf($for k, [[m$k]])]], $if m+1 == i [[m$i]] $else [[::testing::AllOf($for t, [[m$t]])]]); } ]] // AnyOf(m1, m2, ..., mk) matches any value that matches any of the given // sub-matchers. AnyOf is called fully qualified to prevent ADL from firing. $range i 2..n $for i [[ $range j 1..i $var m = i/2 $range k 1..m $range t m+1..i template <$for j, [[typename M$j]]> inline typename internal::AnyOfResult$i<$for j, [[M$j]]>::type AnyOf($for j, [[M$j m$j]]) { return typename internal::AnyOfResult$i<$for j, [[M$j]]>::type( $if m == 1 [[m1]] $else [[::testing::AnyOf($for k, [[m$k]])]], $if m+1 == i [[m$i]] $else [[::testing::AnyOf($for t, [[m$t]])]]); } ]] } // namespace testing $$ } // This Pump meta comment fixes auto-indentation in Emacs. It will not $$ // show up in the generated code. // The MATCHER* family of macros can be used in a namespace scope to // define custom matchers easily. // // Basic Usage // =========== // // The syntax // // MATCHER(name, description_string) { statements; } // // defines a matcher with the given name that executes the statements, // which must return a bool to indicate if the match succeeds. Inside // the statements, you can refer to the value being matched by 'arg', // and refer to its type by 'arg_type'. // // The description string documents what the matcher does, and is used // to generate the failure message when the match fails. Since a // MATCHER() is usually defined in a header file shared by multiple // C++ source files, we require the description to be a C-string // literal to avoid possible side effects. It can be empty, in which // case we'll use the sequence of words in the matcher name as the // description. // // For example: // // MATCHER(IsEven, "") { return (arg % 2) == 0; } // // allows you to write // // // Expects mock_foo.Bar(n) to be called where n is even. // EXPECT_CALL(mock_foo, Bar(IsEven())); // // or, // // // Verifies that the value of some_expression is even. // EXPECT_THAT(some_expression, IsEven()); // // If the above assertion fails, it will print something like: // // Value of: some_expression // Expected: is even // Actual: 7 // // where the description "is even" is automatically calculated from the // matcher name IsEven. // // Argument Type // ============= // // Note that the type of the value being matched (arg_type) is // determined by the context in which you use the matcher and is // supplied to you by the compiler, so you don't need to worry about // declaring it (nor can you). This allows the matcher to be // polymorphic. For example, IsEven() can be used to match any type // where the value of "(arg % 2) == 0" can be implicitly converted to // a bool. In the "Bar(IsEven())" example above, if method Bar() // takes an int, 'arg_type' will be int; if it takes an unsigned long, // 'arg_type' will be unsigned long; and so on. // // Parameterizing Matchers // ======================= // // Sometimes you'll want to parameterize the matcher. For that you // can use another macro: // // MATCHER_P(name, param_name, description_string) { statements; } // // For example: // // MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; } // // will allow you to write: // // EXPECT_THAT(Blah("a"), HasAbsoluteValue(n)); // // which may lead to this message (assuming n is 10): // // Value of: Blah("a") // Expected: has absolute value 10 // Actual: -9 // // Note that both the matcher description and its parameter are // printed, making the message human-friendly. // // In the matcher definition body, you can write 'foo_type' to // reference the type of a parameter named 'foo'. For example, in the // body of MATCHER_P(HasAbsoluteValue, value) above, you can write // 'value_type' to refer to the type of 'value'. // // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to // support multi-parameter matchers. // // Describing Parameterized Matchers // ================================= // // The last argument to MATCHER*() is a string-typed expression. The // expression can reference all of the matcher's parameters and a // special bool-typed variable named 'negation'. When 'negation' is // false, the expression should evaluate to the matcher's description; // otherwise it should evaluate to the description of the negation of // the matcher. For example, // // using testing::PrintToString; // // MATCHER_P2(InClosedRange, low, hi, // std::string(negation ? "is not" : "is") + " in range [" + // PrintToString(low) + ", " + PrintToString(hi) + "]") { // return low <= arg && arg <= hi; // } // ... // EXPECT_THAT(3, InClosedRange(4, 6)); // EXPECT_THAT(3, Not(InClosedRange(2, 4))); // // would generate two failures that contain the text: // // Expected: is in range [4, 6] // ... // Expected: is not in range [2, 4] // // If you specify "" as the description, the failure message will // contain the sequence of words in the matcher name followed by the // parameter values printed as a tuple. For example, // // MATCHER_P2(InClosedRange, low, hi, "") { ... } // ... // EXPECT_THAT(3, InClosedRange(4, 6)); // EXPECT_THAT(3, Not(InClosedRange(2, 4))); // // would generate two failures that contain the text: // // Expected: in closed range (4, 6) // ... // Expected: not (in closed range (2, 4)) // // Types of Matcher Parameters // =========================== // // For the purpose of typing, you can view // // MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... } // // as shorthand for // // template // FooMatcherPk // Foo(p1_type p1, ..., pk_type pk) { ... } // // When you write Foo(v1, ..., vk), the compiler infers the types of // the parameters v1, ..., and vk for you. If you are not happy with // the result of the type inference, you can specify the types by // explicitly instantiating the template, as in Foo(5, // false). As said earlier, you don't get to (or need to) specify // 'arg_type' as that's determined by the context in which the matcher // is used. You can assign the result of expression Foo(p1, ..., pk) // to a variable of type FooMatcherPk. This // can be useful when composing matchers. // // While you can instantiate a matcher template with reference types, // passing the parameters by pointer usually makes your code more // readable. If, however, you still want to pass a parameter by // reference, be aware that in the failure message generated by the // matcher you will see the value of the referenced object but not its // address. // // Explaining Match Results // ======================== // // Sometimes the matcher description alone isn't enough to explain why // the match has failed or succeeded. For example, when expecting a // long string, it can be very helpful to also print the diff between // the expected string and the actual one. To achieve that, you can // optionally stream additional information to a special variable // named result_listener, whose type is a pointer to class // MatchResultListener: // // MATCHER_P(EqualsLongString, str, "") { // if (arg == str) return true; // // *result_listener << "the difference: " /// << DiffStrings(str, arg); // return false; // } // // Overloading Matchers // ==================== // // You can overload matchers with different numbers of parameters: // // MATCHER_P(Blah, a, description_string1) { ... } // MATCHER_P2(Blah, a, b, description_string2) { ... } // // Caveats // ======= // // When defining a new matcher, you should also consider implementing // MatcherInterface or using MakePolymorphicMatcher(). These // approaches require more work than the MATCHER* macros, but also // give you more control on the types of the value being matched and // the matcher parameters, which may leads to better compiler error // messages when the matcher is used wrong. They also allow // overloading matchers based on parameter types (as opposed to just // based on the number of parameters). // // MATCHER*() can only be used in a namespace scope. The reason is // that C++ doesn't yet allow function-local types to be used to // instantiate templates. The up-coming C++0x standard will fix this. // Once that's done, we'll consider supporting using MATCHER*() inside // a function. // // More Information // ================ // // To learn more about using these macros, please search for 'MATCHER' // on // https://github.com/google/googletest/blob/master/googlemock/docs/CookBook.md $range i 0..n $for i [[ $var macro_name = [[$if i==0 [[MATCHER]] $elif i==1 [[MATCHER_P]] $else [[MATCHER_P$i]]]] $var class_name = [[name##Matcher[[$if i==0 [[]] $elif i==1 [[P]] $else [[P$i]]]]]] $range j 0..i-1 $var template = [[$if i==0 [[]] $else [[ template <$for j, [[typename p$j##_type]]>\ ]]]] $var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]] $var impl_ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]] $var impl_inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(::testing::internal::move(gmock_p$j))]]]]]] $var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(::testing::internal::move(gmock_p$j))]]]]]] $var params = [[$for j, [[p$j]]]] $var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]] $var param_types_and_names = [[$for j, [[p$j##_type p$j]]]] $var param_field_decls = [[$for j [[ p$j##_type const p$j;\ ]]]] $var param_field_decls2 = [[$for j [[ p$j##_type const p$j;\ ]]]] #define $macro_name(name$for j [[, p$j]], description)\$template class $class_name {\ public:\ template \ class gmock_Impl : public ::testing::MatcherInterface<\ GTEST_REFERENCE_TO_CONST_(arg_type)> {\ public:\ [[$if i==1 [[explicit ]]]]gmock_Impl($impl_ctor_param_list)\ $impl_inits {}\ virtual bool MatchAndExplain(\ GTEST_REFERENCE_TO_CONST_(arg_type) arg,\ ::testing::MatchResultListener* result_listener) const;\ virtual void DescribeTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(false);\ }\ virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\ *gmock_os << FormatDescription(true);\ }\$param_field_decls private:\ ::std::string FormatDescription(bool negation) const {\ ::std::string gmock_description = (description);\ if (!gmock_description.empty())\ return gmock_description;\ return ::testing::internal::FormatMatcherDescription(\ negation, #name, \ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\ ::testing::tuple<$for j, [[p$j##_type]]>($for j, [[p$j]])));\ }\ };\ template \ operator ::testing::Matcher() const {\ return ::testing::Matcher(\ new gmock_Impl($params));\ }\ [[$if i==1 [[explicit ]]]]$class_name($ctor_param_list)$inits {\ }\$param_field_decls2 private:\ };\$template inline $class_name$param_types name($param_types_and_names) {\ return $class_name$param_types($params);\ }\$template template \ bool $class_name$param_types::gmock_Impl::MatchAndExplain(\ GTEST_REFERENCE_TO_CONST_(arg_type) arg,\ ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\ const ]] #endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_